Phenotypic heterogeneity in a family with a small atypical microduplication of chromosome 22q11.2 involving TBX1

2012-12-03 22:30:36

European Journal of Medical Genetics; 2012 Dec; 55(12):732-36

James D. Weisfeld-Adams, Lisa Edelmann, Inder K. Gadi, Lakshmi Mehta


The chromosome 22q11.2 region is commonly involved in non-allelic homologous recombination (NAHR) events. Microduplications of 22q11.2, usually involving a 3 Mb or 1.5 Mb region constitute the 22q11 microduplication syndrome. Both microdeletions and microduplications of 22q11.21 are reported to share several phenotypic characteristics, including dysmorphic facial features, velopharyngeal insufficiency, congenital heart disease, urogenital abnormalities, and immunologic defects. We report a child who presented at 8 months of age for evaluation of microcephaly and mild motor delay. Head circumference at birth, at 8 months, and at 19 months of age was below the 3rd centile. Other findings included left-sided cryptorchidism and developmental dysplasia of the left hip. In addition, echocardiography revealed a restrictive patent ductus arteriosus. Chromosomal microarray analysis using Affymetrix Genome-Wide Human SNP Array 6.0 revealed a novel 437 kb interstitial duplication at 22q11.21, involving TBX1, whose breakpoints did not coincide with known low copy repeat (LCR) regions. The same duplication was confirmed by fluorescent in situ hybridization (FISH) in the patient's mother and an older sister. The mother has a history of anxiety disorder and depression. The sister had a history of delayed motor milestones. None of the three duplication carriers has any documented renal anomalies or other significant medical problems. This report demonstrates the clinical heterogeneity associated with microduplications of 22q11.2 and illustrates the difficulties related to providing prognostic information and accurate genetic counseling to families when this finding is detected. The described microduplication is the smallest in this genomic region reported to date and further implicates abnormal gene dosage of TBX1 in disorders resulting from 22q11.2 rearrangements.

To Access Article, Click Here